Exercises

1. Let A, B, X be sets with the following properties:

 $A \subseteq X$ and $B \subseteq X$ For any set Y if $A \subseteq Y$ and $B \subseteq Y$ then $X \subseteq Y$.

Show that $X = A \cup B$.

- 2. Let $A, B \subseteq E$. Show that $A \cap B = \emptyset$ if and only if $A \subseteq B^c$. Show that $A \cup B = E$ if and only if $A^c \subseteq B$.
- 3. Given $A, B \subseteq E$, show that $A \subseteq B$ if and only if $A \cap B^c = \emptyset$.
- 4. Give examples of sets A, B, C such that $(A \cup B) \cap C \neq A \cup (B \cap C)$.
- 5. Show that A = B if and only if $(A \cap B^c) \cup (A^c \cap B) = \emptyset$.
- 6. Given two sets A, B we define the symmetric difference $A\Delta B$ by

$$A\Delta B = (A - B) \cup (B - A).$$

Prove that if $A\Delta B = A\Delta C$, then B = C.

- 7. Show that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- 8. Show that a function $f : A \to B$ is injective if and only if f(A X) = f(A) f(X) for every $X \subseteq A$.
- 9. Let $f: A \to B$ be given. Show that
 - a. For every $Z \subseteq B$, we have $f(f^{-1}(Z)) \subseteq Z$.
 - b. f(x) is surjective if and only if $f(f^{-1}(Z)) = Z$ for every $Z \subseteq B$.
- 10. Given a family of sets $(A_{\lambda})_{\lambda \in L}$, let X be a set with the following properties:
 - 1. For every $\lambda \in L$, we have $A_{\lambda} \subseteq X$.
 - 2. If $A_{\lambda} \subseteq Y$ for every $\lambda \in L$, then $X \subseteq Y$.

Show that $X = \bigcup_{\lambda \in L} A_{\lambda}$.

- 11. Let $f : \mathcal{P}(A) \to \mathcal{P}(A)$ be a function such that if $X \subseteq Y$ then $f(Y) \subseteq f(X)$ and f(f(X)) = X. Show that $f(\bigcup_{\lambda \in L} X_{\lambda}) = \bigcap f(X_{\lambda})$ and $f(\bigcap_{\lambda \in L} X_{\lambda}) = \bigcup f(X_{\lambda})$. [Here X, Y, X_{λ} are subsets of A]
- 12. Let $\mathcal{F}(X;Y)$ denote the set of all functions with domain X and codomain Y. Given the sets A, B, C, show that there is a bijection

$$\mathcal{F}(A \times B; C) \to \mathcal{F}(A; \mathcal{F}(B; C)).$$